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Machine Systems for Exploration and Manipulation:

A Conceptual Framework and Method of Evaluation

Abstract

A conceptual approach to describing and evaluating problem-solving by robotic systems is offered.
One particular problem of importance to the field of robotics, disassembly, is considered. A general
description is provided of an effietnr yqtern equipped with scnsors that interac.b Vitl, objecr, fu,
purposes of disassembly and that learns as a result. The system's approach is "bottom up," in
that it has no a priori knowledge about object categories. It does, however, have pre- existing
methods and strategies for exploration and manipulation. The sensors assumed to be present are
vision, proximity, tactile, position, force, and thermal. The system's capabilities are described
with respect to two phases: object exploration and manipulation. Exploration takes the form
of executing "exploratory procedures," algorithms for determining the substance, structure, and
mechanical properties of objects. Manipulation involves "manipulatory operators," defined by the
type of motion, nature of the end-effector configuration, and precise parameterization. The relation
of the hypothesized system to existing implementations is described, and a means of evaluating it
is also proposed.
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Machine Systems for Exploration and Manipulation
A Conceptual Framework and Method of Evaluation1

Ruzena Bajcsy Susan Lederman Roberta L. Klatzky
University of Pennsylvania Queen's University University of California

Philadelphia, PA Kingston, Ontario Santa Barbara, California

1 Introduction

The study of sensate robotic systems is at an early stage, but already there is considerable activity
at both the hardware and software lcvels. What has not yet appeared in this area is a principled
theoretical context in which to systematically develop issues and to evaluate proposed solutions.
The present paper describes such a context, drawing from the field of behavioral science as well as
robotics.

In this paper, we offer a general framework for addressing the question of how a robotic system
should solve a problem, by describing one potential system. We assume that the system is equipped
wire particular sensory and effector capabilities. Drawing in part from experimental work with
humans, we suggest approaches to algorithms that might control these capabilities, evaluate results
of actions, and learn. We then decompose the general problem into components, and describe
how the system might handle each sub-problem and its potential for success and failure, given an
analvsis of its capabilities and limitations.

in addition, we suggest a means of assessing the contributions of the proposed system compo-
nents. The approach is to deprive the system of specific capabilities, in either software or hardware,
and to determine the effects on the problem domain. A set of preliminary predictions is offered, to
be tested in future research.

Our goal is to provide one example of a systematic conceptual approach that might be used
within the field of robotics. The potential advantage of this approach is that it embeds any partic-
ular problem within a broader theoretical context, one which should facilitate comparisons among
various activities of robotic systems and the specific algorithms that are offered to perform them.

The framework we are proposing is sufficiently general that it can accomodate a wide variety
of visual systems that deliver three- dimensional information, together with robotic end effectors
that are both sensate and capable of movement with several degrees of freedom. The sensors we
assume, in addition to vision, are proximity and haptic, the latter including tactile, position, force,
and thermal sensing. The force sensor should provide force vectors and torques in three dimensions.

An important initial concern is the relative contribution of data derived from the sensors, on
the one hand, and a knowledge base describing the world of objects, on the other. Extensions
of artificial intelligence suggest that the knowledge base might be given a high priority, and yet,
as sensory data increase in availability and accuracy, the contribution of data-driven processes
becomes potentially more potent. We adopt the position that such processes can in fact be given
precedence, driving knowledge acquisition by the system.

Our approach is "bottom up," in that we do not assume the system has a priori semantic
information about object categories. It does, however, have pre-existing methods and strategies for
exploration and manipulation, and it is also capable of tuning its rules and developing new ones by
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learning. This knowledge constrains data acquisition, data interpretation, and subsequent actions.
Thus, the system is both non- deterministic and intelligent.

An implementation of the proposed framework is currently under development in the GRASP
laboratory of the University of Pennsylvania. This system includes a stereo vision component,
Puma arm, and a moderately complex hand (Ulrich, Bajcsy, & Paul, 1988), which will be equipped
with proximity, position, force, tactile, and thermal sensors. Previous work in this laboratory has
implemented precursors to the proposed system. Although these initial efforts lack the full sensing
and effector capabilities that we consider here, they are nonetheless informative about the system's
potential, and they will be reviewed below.

2 Disassembly as Data-driven Manipulation

In general, the purpose of the system is to interact with objects and hence to learn about them.
The domain of objects includes solids that vary in material, structure, and mechanical properties.
More specifically, we describe the system's operation in a prototypical task: "disassembly," defined
as decomposing objects into their component parts without mechanical damage. This task can
be divided into two general phases, namely, initial haptic and visual exploration, followed by task-
oriented manipulation. We choose to develop our framework in the context of the disassembly task,
because it imposes substantial demands on both intelligent exploration and manipulation, and it
fits the data-driven context particularly well. (Assembly, on the other hand, is intrinsically model-
driven.) Disassembly further provides a paradigm for learning about objects and constructing
representations.

The disassembly problem requires multiple sensing devices (except for trivial cases). Vision is
used to guide the end effector to the object and to extract gross structural features; it is also used
to guide manipulation and to evaluate its effects. Proximity sensing indicates imminent contact
with the object; this is particularly important when the hand obscures vision. Purposive haptic
exploration is a necessity with the bottom-up approach, because there are no pre-stored object
features. A variety of features are haptically extracted.

The importance of the present bottom-up approach can be seen clearly when we contrast it
with how the problem of exploration and manipulation has been treated in systems science. There,
these topics axe subsumed under "system identification" (Zadeh, 1962; Eykhoff, 1974). The specific
task, for example manipulation or disassembly, is considered as a process. The control signals
are obtained from sensors and their derivatives that measure position, geometric structure, size,
force/torque, and so forth. The process is modeled mathematically using relations based primarily
on mechanics and geometry, such as the laws of Newton and Coulomb. The validity of these
relations further requires certain assumptions which are expressed in terms of parameters such
as compactness and coefficients of friction and stiffness (e.g., Cutkosky, 1988). When modeling a
process, the designer typically makes a priori assumptions about the values of these parameters
This is a reasonable procedure, since having initially chosen the material and the design structure,
he or she knows the values of these object properties.

However, this is certainly not the case when a robot is placed in an unknown environment.
Fel'dbaum (1960) has considered a similar situation, that is, one in which there is no a priori
knowledge available about the process and its parameters. Here too, it becomes desirable to
investigate (i.e., explore) the characteristics of the process, as well as direct (i.e., manipulate)
it. Fel'dbaum uses the term "dual control" to describe the two functions, "investigation" and
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"direction".
; This'4stinction-highfights an important-,problm in dual-control systems, namely, that potential

conflicts arise as a result of competition between the investigatory and directional functions of the
process. Efficient control can only be realized when actions on the object are coordinated over
time; a delay at any point can weaken the control process. Nevertheless, control also requires that
the properties of the object be sufficiently known, which necessitates that time be spent on the
investigatory function. If the directional function is too precipitous, it may execdte an operational
movement without appropriately using the results of the object investigation. In contrast, if control
proceeds too cautiously, the system will delay longer than necessary. Processing of the information
obtained by investigating object properties will be performed at the expense of directing the object
to its required state at the correct time. It is necessary to properly coordinate these two functions,
so as to maximize a pre-specified quality control criterion.

This analysis indicates that two risk factors must be considered at any given time. The first
factor is investigatory risk, which results in unnecessary delays in task performance. The second
is directional risk, that is, the risk of action due to insufficient knowledge of the properties of the
manipulated object and/or system.

For the remainder of this paper, we will use the term "exploration" to refer to investigation, and
"manipulation" to refer to direction. Schematically, we can represent the two processes as shown
in Figure 1.
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StartE lore Manipulate Stop

Figure 1: Exploration and Manipulation
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Note that each process can repeat itself several times. Further, the coordination between the two
processes is controlled by a tradeoff between exploratory (investigatory) risk versus manipulatory
(directional) risk.

Our paper next outlines the proposed system's a priori methods of exploration and manipulation
and its control strategies. Primitive "exploratory procedures" and "manipulatory operators" are
described, as are the primitive attributes extracted during exploration. We then present a stage
analysis of the disassembly task and consider previous work that appears relevant to this analysis.
Next we evaluate how well existing systems have instantiated the present assumptions. Finally, we
describe research avenues for validating the proposed framework.

3 Object Exploration

In its initial exploratory mode, the system's goal is to learn about the structural, material, and
mechanical properties of objects. Vision may be used to guide the effector to an object and to
extract a structural description. The object's representation is then considerably augmented by
haptic sensing. The following discussion concentrates on haptic exploration.

3.1 Exploratory Procedures

Human psychological research (Lederman & Klatzky, 1987) has established that haptic sensing is
accomplished through a set of stereotypical patterns of hand movement, each pattern being optimal
for delivering a particular object property. These patterns are called "exploratory procedures." In
our theory, these are programmed a priori as algorithms for property extraction (see also Klatzky,
Bajcsy, & Lederman, 1987, for a preliminary discussion of robotic exploratory procedures). Leder-
man and Klatzky have documented two types of exploratory procedures in human haptics, which
pertain to an object's structure and substance properties. To these we now add a third, procedures
for extracting mechanical properties. A summary of the properties extracted in each procedural
domain is presented in Table 1. The individual procedures are discussed in detail below.
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Table 1: Properties extracted from objects

Structu re- related

" shape

" size

" weight (with respect to size)

Substance-related

" hardness

" surface texture

* thermal properties (e.g., thermal conductivity)

" weight (with respect to density)

Mechanical

* elasticity (vs. rigidity)

* brittleness

* viscosity

e coefficient of friction

e part motion (linear vs. rotary)

e degrees of freedom
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3.1.1 Structure-related Procedures

The structural properties that have been studied are size, shape, and weight (to the extent it
is determined by size). The two haptic exploratory procedures used for this purpose are Enclo-
sure (molding of the end effectors to the object contours) and Contour Following (dynamic edge
following).

3.1.2 Substance-related Procedures

These determine information about the following object properties: hardness, surface texture,
thermal, and again, weight, to the extent it is determined by density. The thermal property is a
complex primitive that may be decomposed into components such as conductivity, specific capacity,
and diffusivity.

The exploratory procedures associated with these substance primitives are- hardness - Pressure
(application of normal forces or torque to the object): texture - Lateral Motion (lateral back-and-
forth rubbing movements, usually on a homogeneous portion of the surface); thermal - Static
Contact (static placement of the end effector on the object without contour molding); weight
Unsupported Holding (lifting the object away from a support).

3.1.3 Mechanical Procedures

Mechanical properties are defined as those that reflect the forces applied to an object and the
resulting motions. While Klatzky and Lederman did not exhaustively study mechanical properties
of objects, they did examine procedures for determining the type of motion of object parts. We
do not have substantial human data on the exploratory procedures that elicit such properties at
present. However, a set of properties can be defined as shown in Table 1.

Of these mechanical properties, coefficient of friction is of particular importance to the robotics
community, which has only now begun to consider the effects of friction - specifically on the stability
of control. However, this topic has been studied by other areas in the engineering community,
particularly with respect to the friction behavior of a brush-type dc servo-motor driven mechanism
(e.g., Armstrong, 1988). Further, the study of non-linear friction in servo mechanisms has a long
history. For example, Tustin (1947) examined the effect of backlash and non-linear friction upon
feedback control. And Tou and Schulteiss (Tou, 1953; Tou & Schulteiss, 1953) thoroughly studied
the consequences of static and kinetic friction on control. Finally, slipping, sliding, and rolling are
becoming of considerable concern to roboticists (e.g., Howe, Kao, & Cutkosky, 1988; Brock, 1988:
Cole, Hauser. & Sastry, 1988).

We emphasize here, however, that all of the work cited deals either with the impact of friction on
control or with the kinematic and dynamic models of finger/object relations, in all cases knowledge
of the friction coefficients is assumed. Why should this be so? We believe that there are two reasons.
First, robotic sensors that might extract the requisite mechanical information have not been readily
available. Second, there is currently a strong emphasis on top-down processing, as exemplified by
lberall, Jackson, Labbe, & Zampano r1988), who allow substance and mechanical properties to
be inferred from a priori knowledge rather than learned by active exploration. Nevertheless, a
little work on these properties has been done. Stansfield (1987) has implemented a procedure for
determining the elasticity of an object, for example.

7



4 Object Manipulation

We now consider the manipulatory activities involved in our prototypical task, object disassembly.

4.1 Manipulatory Operators

4.1.1 Simple operators

The simplest form of manipulation is to apply a force on an object in some direction with some
effector configuration for a period of time. Such simple actions are tile result of three types of
decisions. One pertains to the nature of the manipulatory action, another to the geometry of the
effector configuration, and the final one to selection of a set of parameters related to force, lime,
and details of the effector configuration. The result of these decisions is a simple man.Vulatory
operator, the components of which are shown in Table 2.
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Table 2. Manipulatory Operators

Operator

" Action Type

" translation

" rotary

Effector Configuration

" number of components contacting object

" flexion vs. extension (prehensility)

Detailed Parameterization

" force paramters (magnitude, direction)

" effector parameters (joint angles, range of motion)

" temporal parameters (duration, time between retries)



Common terms for manipulation include "lift", "push", "pull", "turn", and "stabilize". Within
our scheme, these are the result of an action type and parameter selection. Lifting, pushing,
and pulling are all translations that vary in terms of their parameterization. Lifting is translation
counter to gravitational force. Interestingly, pushing and pulling are both translations in a common
plane. The distinction in terminology is made with respect to the body, and often pulling is reserved
for a prehensile effector configuration. Turning is used to refer to rotary movement. Finally,
stabilization is the absence of translation or rotation due to one force being applied counter to
some other force.

In the robotics field, Mason (1984) has studied in detail the mechanics involved in pushing and
pulling. Lifting is well developed, as noted above. And Salsbury (1981) has described the minimal
configuration required for fully stabilizing an object. We know of no work on turning.

Common terms are also used to refer to the effector configuration, including "poke", "pinch",
"palm", and "clench". These terms can be differentiated by the variables of number of effector
components used to contact the object, and whether they are flexed or extended. Thus, a poke
occurs with one extended finger, a pinch with two or three flexed fingers; palm and clench involve
flexed and extended fingers of the full hand, respectively. These distinctions have been made for
the human hand by Klatzky, McCloskey, Doherty, Pellegrino, & Smith, 1987.

The choice of the manipulatory operator is determined jointly by constraints imposed by goals
of the system, the physical properties of the end effector, and the environment. Hager (1988) has
explicitly modeled the cost of information for purposes of both exploration and manipulation. This
work therefore shares a common theme with the earlier analysis by Fel d'baum. The constraints
imposed by the geometry of the object and the physical capacities of the hand have been studied by
psychlogists. Napier (1956; see also Malek, 1981) suggested that the choice of end-effector geometry
is contingent on the amount of force to be applied. How hand shape is dependent on object shape
has also been studied (e.g., Klatzky et al., 1987; Kroemer, 1986). Newell (in press) has considered
the joint constraints of hand size and object size on the choice of end effector configuration for
grasping objects.

4.1.2 Compound operators

These simultaneously or in sequence apply two or more simple manipulatory operators, such as
when bending, squeezing, or twisting. Compound operators are frequently necessary to move one
part of an object relative to the rest of it. or to make complex motions such as scissoring (mirror-
image pushing and pulling).

5 Stages of Disassembly

5.1 Exploratory Phase

We now consider a stage analysis of the disassembly task, beginning with the exploratory phase.
Three stages of exploration, distinguished by the complexity of movement involved, and two stages
of manipulation are described. In the present analysis of exploration, ve include only static vision,
to limit the complexity of the problem. Table 3 provides an overview of the three exploratory stages
with the corresponding information about object properties that may be extracted hapticaly.
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Table 3. The exploratory phase of disassembly

Stage 1 Stage 2 Stage 3

STATIC SIMPLE ADVANCED
EXPLORATION - DYNAMIC EXPLORATION - DYNAMIC EXPLORATION

Exploratory Activity Exploratory Activity Exploratory Activity
single contact multiple contacts object or part

(produced by a single manipulation
moving contact, or by
multiple static
contacts)

Outputs Outputs Outputs
Solid Hardness,

stiffness coefficient,
brittleness,
elasticity, visco-
elasticity

Static coefficient Dynamic coefficient of
of friction friction

Local crude texture Global and more precise
texture; homogeneity
of material

Thermal:conductivity
capacity, etc.

Local structure: Global structure: Global Structure:
corners, edges, envelope shape; size precise shape;
radius of curvature

Weight
direction, degrees
of freedom
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Stage 1: Static Exploration.

In the first stage of exploration, the system statically attempts to assess the "physics" of the
world in which the object exists. When vision is present, it provides structural information about
the visible surfaces of the object and its context. Static haptic exploration consists of simple
contact. From this, the array sensor can provide local information about texture (using the grain
in the image) and local structure. A thermal sensor allows the system to determine thermal
properties of the object, for example, conductivity, capacity, and so forth.

As the information that is provided at this stage is limited by the performance of the sensors,
one must develop as complete a model as possible of the sensors before implementing Stage 1
(Fuma & Bajcsy, submitted; Krotkov, 1987). The parameters to be modeled are, for example, the
sensitivity function, hysteresis, spatial resolution, signal-to-noise ratio, reliability, variability, and
the range of admissible values.

Stage 2: Simple Dynamic Exploration.

Next, the relatively simple dynamic exploratory procedures are added. A plausible sequence is
as follows.

1. The force and position sensors are used to determine hardness and elasticity. As described by
Stansfield (1987), this is done by comparing the initial and final position after the application
of force using a Pressure procedure (to extract hardness), and re-contacting the object to
determine if its initial position is resumed after the force is withdrawn (to extract elasticity).

2. Lateral Motion is added to determine texture. This procedure enhances the availability
and possibly the precision of texture information compared to the static array measure. In
addition, it is likely to provide information about the dynamic coefficient of friction.

3. Structural properties are determined by vision and by haptic Enclosure. Vision is used to
guide the robotic fingers to enclose the object as symmetrically as possible. The force sensors
then are used in an attempt to equalize the forces applied by each finger pad, thus equating the
positions of the fingers relative to the object surface. If this can be achieved, the array sensors
can be examined unambiguously, and comparison of array outputs can be used to determine if
the material is uniform. More complex algorithms must be used if finger positions and forces
cannot be equated. Size and gross shape can be determined from the same haptic Enclosure
procedure.

Stage 3: Advanced Dynamic Exploration.

At this stage, exploration includes dynamic interactions with the object, to extract details of
substance, structure, and mechanical properties. These interactions constitute manipulation, but
in the service of exploration.

Dynamic interaction of this sort brings up an important consideration: Grasping must remain
stable, while manipulatory forces are applied. Yoshikawa and Nagai (1988) have presented an
analysis of fingertip forces that provides a decomposition into two components: those forces that
maintain the stability of grasp, and those that effect the desired manipulation. They define the
manipulating force as a fingertip force satisfying the following three conditions. First, it will produce
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the specified resultant force. Second, it is not in the inverse direction of the grasping force. Third,
it does not contain any grasping force compon2nt.

The following exploratory procedures are suggested for Stage 3:

1. The object is lifted (Unsupported Holding) to determine weight.

2. Contour Following is used to determine the object's shape in detail and its potential part
structure.

3. Specific mechanical procedures (to be defined) determine high-level properties such as the
nature of part motion and degrees of freedom at a joint.

5.2 Manipulatory Phase

Thus far, we have defined and described three exploratory stages, which together constitute the
object exploration phase of the disassembly task. With the foregoing discussion of manipulatory
primitives, we can now consider the second phase of our task, consisting of two manipulatory stages.
During these stages, manipulatory operators are applied, driven by the data gathered during the
earlier exploratory phase. An overall flow diagram of the manipulatory phase is presented in Figure

2.

13



RECOGNIZE
Find part Junction

Report

SELECT the parameters
of the manipulatory

operator

4
Execute

Manipulatory Operator

Evaluate 0- Update-Learn

Figure 2: Flow diagram of the manipulatory phase
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Stage 4: Task-Oriented Manipulation.

The fourth stage in our task involves the performance of some manipulatory action that is
required for disassembly. We conceive of three substages:

1. Find next part juncture to test for disassembly (using vision or haptics). A part is defined
structurally as the contour between two concavities and/or by a homogenous textured surface
or volume.

2. Select and parameterize a manipulatory operator to apply to the part.

3. Apply manipulatory operator and determine result. Possible results are: the part is not
movable, the part is movable but not removable, and the part is both movable and removable.
Vision can be used to make this evaluation, but the force and position profile over time should
also indicate whether movement has occurred.

Stage 4 requires a set of "executive" rules that are external to the expioratory/manipulatory
apparatus per se. These rules reside at a higher level, controlling exploratory and manipulatory
activities.

In Substage 1, rules must exist to prioritize junctures on the object for testing. Visual dom-
inance is suggested here; junctures recommended by visual analysis will be tested before those
recommended by haptic exploration. We justify this rule on two bases: Vision provides a global
perspective, and it also excels at finding structural boundaries. For complex objects having parts
that must be disassembled in a specific order, sophisticated rules are needed, such as, start with
junctures of external parts that project beyond the outer envelope of the object. Such rules are
likely to be available only after learning. Prioritization of parts establishes a starting rule.

Substage 1 also requires a stopping rule, which determines when no further part should be
selected. Either a global a priori rule is needed, such as stopping after a fixed time, or the ex-
ploratory data must determine the stopping parameter. Basing the stopping point on an analysis
of the number of part junctures seems untenable for complex objects, which might have a large
number of fine projections to test. Therefore, some rule external to the bottom-up process itself
seems necessary.

Guidance in the selection of manipulatory operators in Substage 2 requires a number of heuristic
rules. The highest priority should be given to the general principle of economy, that is, do no
more than is necessary in consumption of time and energy. Essentially, we assume the executive
minimizes some function of time and energy. We offer some potential rules, although caution must
be exercised regarding their generality:

(a) Minimal force: Use as little force as possible, to prevent objects from sliding out of the
workspace or breaking. This disfavors lifting, because considerable force would usually
be required to overcome gravity.

(b) Motoric ease: Select operators where the complexity of the end-effector geometry is as
simple as possible.

(c) Minimal system change: Use a configuration that already exists, if possible, or change
it as little as possible. Execute an operator that will change the configuration as little
as possible (this rule would downgrade scissoring motions, for example).

15



(d) Time sharing: Do two things at once, if compatible. Compatability is a complex concept
that needs to be analyzed in further detail. One aspect of compatability is motoric. For
example, lifting and squeezing are two separate acts that may be easily performed in
combination.

(e) Past history of success: Use operators that have previously been successful.

(f) Don't persist. When the range of usual forces has been exhausted, don't continue. Apply
any operator for only a "reasonable" time.

We avoid specific rules that connect structural properties with appropriate manipulations. An
example is, parts that project from slots within a plane suggest a translation action (push, pull).

Such rules are likely to result from learning (see below).
Conflict resolution must be performed, because rules often disagree. For example, execution of

a compound operator violates motoric simplicity but adheres to the time-sharing rule.
We note that the foregoing rules apply to the manipulatory phase of disassembly, but similar

rules could be applied to the exploratory phase. As described above, thore is z. prescribed, exhaus
tive sequence of exploration that is followed. If the exploratory phase were made strategic, as we
envision the manipulatory phase, then exploration would proceed as economically as possible and
would terminate early, if sufficient information were obtained to allow a disassembly test. A more
sophisticated model would alternate between exploratory and manipulatory phases.

Stage 5 - Learning.

Following the application of a manipulatory operator, learning can occur. We are interested
here in learning of a relatively complex sort. The question is, given a sequence of sensory measure-
ments and exploratory and manipulatory procedures, what data reduction and strategic processing
will allow an effective set of actions to be repeated or appropriately modified? Modification that

generalizes or adapts a learning sequence is particularly important. For example, it might enable
an object to be assembled, given its history of disassembly.

Essentially, we view what is stored as a temporally ordered array giving the results of the
exploratory procedures, the manipulatory operators attempt-d with their parameter values, and the
results of manipulation. In this way properties of the object are stored in relation to manipulatory
activities. Success or failure of the manipulatory operators will adjust the array. An open question
is whether a PDP approach lends itself to such a model. A PDP mechanism is well suited to

building associations between manipulatory activities and particular objects, but its demands on
system memory may make it unfeasible for use with conventional robotics.

The learning mechanism that is sought must be capable of inducing rules at very different
levels of complexity. Learning can be general, such that operations that work are increased in
strength, while those that do not work are decreased. Learning can also be specific to a particular
manipulatory episode, for example, learning that a particular object structure was successfully
disassembled with rotary force at a particular part. Note we assume that the system does not learn
the entire routine for dealing with a specific object; for example, there is no reason to remember
exactly where a stabilizing force was applied. Learning some key rule is all that is needed, as
general strategies can then be used to make sure that the rule is executed properly.

Finally, it should be noted that although we have described exploration and manipulation as
consisting of two phases, in practice they must occur in alternation or even in tandem, especially
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given our bottom-up approach. Manipulation may be interrupted for further exploration; there
may be a repeated manipulatory/exploratory cycle.

6 Existing Systems as Theory Instantiations

No existing system fully instantiates the present approach. However, various aspects have been
implemented. Below, we describe current implementations including the one being developed in
the University of Pennsylvania GRASP laboratory. We also summarize the contributions of its
predecessors.

6.1 Hardware

Many different physical principles are currently being explored for robotic sensors. Some substance
and structural information can potentially be provided by robotic tactile array sensors (e.g., Winger
z Lee, 1988: Tise, 1988; Fearing & Binford, 1988; Clark. 1988; Cameron, Daniel, & Durrant-Whyte,
1988; Begej, 1988; Dario & DeRossi, 1985; Dario & Buttazo, 1987). Unfortunately, very few are
commercially available, and these provide very limited spatial detail in all three dimensions. Thus,
texture resolution is very crude, while the structural information provided by the array sensor
enables detection of contact with an edge or corner, and possibly radius of curvature as well. Size
can be discriminated up to the limited extent of the array. Work on sensors that can provide
thermal information through static touch has also been initiated (e.g., Russel, (1986); Siegel et al.
(1987)).

At the University of Pennsylvania, a complex system involving visual and tactile sensing has
been developed. The visual system used has been described in detail by Allen (1985) and Krotkov
(1987). The robotic hand is mounted on a PUMA 6-degree of freedom manipulator. Previous work
has been done with a Lord sensor mounted on the end of the PUMA arm, and with a gripper
equipped with two opposing Lord sensors on its interior surfaces. The Lord sensors provide a 10
X 16 pixel array in a surface approximately 1 in square, as well as force vectors and torques in the
planar surface of the array and the axis of the arm.

Ulrich, Bajcsy, and Paul (1988) are currently developing a three- fingered hand (the UPENN
hand) with four full degrees of freedom and three coupled joints. Each finger has two joints,
proximal and distal to the PUMA arm. The proximal joint flexes and extends, and the distal joint
is coupled to this movement. Two of the fingers also move laterally, toward and away from one
another. This allows for a variety of effector configurations, including:

" single finger extends or flexes, two curled toward palm

" two fingers flush together, third curled toward palm

" two fingers flush or separated, third opposes

" three fingers oppose symmetrically (i.e., 120 deg apart)

" one or two fingers yoked as hook

The hand will include tactile, force, and thermal sensors. Each finger has a force sensor providing
vector and torque information at the distal joint, and a tactile sensor on the tip. The palm will
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have both a Lord sensor (described above) and a thermal sensor. One finger has a removable distal
phalanx to which appendages can be mounted, such as a "nail" for generating vibration during
lateral motions.

7 Existing Algorithms for Exploration and Manipulation

Algorithms for vision are well developed and have been described in books such as Ballard and
Brown (1982) and Horn (1986).

Unfortunately, relatively little work has been done to implement haptic exploratory procedures.
An excellent argument concerning the need for robotic exploratory procedures was provided recently
by Gottschlich and Kak (1988), in a discussion of strategies and errors in high-precision part mating.
Part-mating strategies employ both guarded and compliant motion. Guarded motion brings a part
into contact with its target environment, while compliant motion slides the part along or through
the mating part.

To date, most work in fine-motion planning has incorrectly assumed that motion can occur in
a quasi-static manner. However, different considerations arise in a dynamic context. In general,
there are different modes of impact that can occur between mating surfaces, leading to unexpected
changes in the position of the end-effector and to unanticipated forces. Thus, it is unlikely that
either a guarded motion or a compliant motion can satisfy a force constraint precisely. The ensuing
sticking can cause unexpected changes in the position of the part, further exacerbating error,
especially in a high-force condition.

For compliant moves that are directed toward a defined goal position while maintaining a specific
force constraint in the perpendicular direction, force errors are related to position errors through a
stiffness "constant". However, it is very questionable whether this ,.oefficient of restitution should
be represented as a constant. Typically, the plasticity of a region of deformation depends at any
moment on how much it has already been deformed. Thus as deformation continues, the coefficient
of restitution should change, making the problem mathematically intractable.

The foregoing arguments suggest that part-mating is complex and non-deterministic. Haptic
exploration of the object's substance and mechanical properties would prove very useful in this
situation, providing ongoing information about changes in object properties and part relationships.

Some haptic algorithms for Stages I and 2 have been developed by Stansfield (1987), who
used the Pressure procedure to extract gross texture, hardness, and elasticity. Compliance, which
is related to the hardness/elasticity property, has been widely used for control purposes (e.g.,
Xu & Paul, 1988; Masson, 1981; Whitney, 1977; Paul & Shimano, 1976). Lateral Motion will
be implemented in the hand designed by Ulrich, Bajcsy, & Paul (1988) by adding a "nail" to the
robotic effector to determine vibratory forces as the nail moves across an object surface. The Stage-
3 procedure for Unsupported Holding (lifting) has also been developed (Stansfield, 1987; Tsikos,
1987), although no weight determination has been made in conjunction with Unsupported Holding.
Stprnsf-old (1987) and Allen (1987) have implemented one-finger versions of Contour Following, and
a version for two fingers with limited degrees of freedom has been developed by Koutsou (1988).
However, developing a three-finger algorithm for obtaining contour information remains an open
problem.

With respect to Stage 4, rudimentary versions of many of its problems have been handled by
Tsikos (1987). Tsikos' task was to remove .-hjectR from a table top; thus all "parts" of the display
were both movable and removable. The shape ane size of the object determined whether it was
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pushed (using a gripper in conjunction with a spatula), lifted by prehension (using the bare gripper)
or lifted by suction (using a cup held by the gripper). The tools (spatula and suction cup) can
be viewed simply as specialized end effectors. The strategies were modeled by a nondeterministic
(data-driven) automaton. The automaton was finite state. Its stopping rule was clear - stop when
the table is empty.

In work relevant to the executive rules of Stage 4, in particular, Peshkin&Sanderson (1988)
have considered the minimization of energy in quasi-static manipulation. They suggest an energy
principle for quasi-static systems that is similar to our principle of minimal force. It states that the
system should select, from the set of all motions that satisfy the existing constraints, the motion
that minimizes the instantaneous power (i.e., the lowest energy or "easiest" motion). Although
intuitively appealing, the authors point out that the principle is generally false! For example, in
the case of viscous forces, the motion predicted by the minimum power principle will be incorrect.
But they further show that the principle is correct in the useful but special case where Coulomb
friction is the only dissipative or velocity-dependent force acting in the system.

There have been attempts to deal with learning processes (Stage 5) in the robotics literature,
specifically as applied to automation of robot programming (e.g., Bertenstein & Inoue, 1988).

8 Evaluation of the Framework

The biological perceptual sciences have evaluated the relative contribution of various sensory/perceptual
systems by using several different experimental paradigms. One method is to use a population of
subjects (e.g., the blind) in whom the specific sensory cues are either missing or deficient, due to
disease or accident. A second method is to create this same situation in a more controlled manner
by temporarily and selectively fatiguing the sensory channel under investigation. A third approach
is to create a discrepancy between two sensory systems (e.g., vision vs. touch) or between sensory
cues from the same system (e.g. motion parallax vs. binocular disparity cues to visual depth
perception), to evaluate the relative contribution of these different sensory inputs to perception.

We view all three paradigms as being of potential value in the assessment of robotic perceptual
systems. We have adopted a variant on the first approach above to evaluate the present frame-
work: That is, we consider the impact of eliminating individual components - sensors, exploratory
procedures, manipulatory operators, and higher-level algorithms - on system performance. Specific
predictions are discussed below.

8.1 Role of the Sensors

8.1.1 Vision

Elimination of vision in our system should have a profound effect, particularly on manipulation.
Blind reaching would become necessary to find the object: however, the proximity sensor should
minimize risk of damage. The haptic exploratory procedures can still provide structure, substance.
and mechanical information, although their burden would be increased by the absence of a gross
visual analysis. Structural information should be particularly affected. Manipulation should still
be performed effectively. However. it should be more difficult to determine where to apply manip-
ulatory forces, and to evaluate success in disassembly.
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8.1.2 Proximity

Proximity and vision provide redundant information about the distance of the effector relative to
the object. If both of these non-contact sensors were removed, there would be increased risk of
damage to the object through blind reaching. However, the proximity sensor could be eliminated
without substantial cost, if vision remained.

8.1.3 Tactile

Loss of the tactile sensor would preclude direct structural information about contact with edges
and corners. This could still be derived from the force sensor, but by a more complex algorithm,
one which reads torque changes as a function of minute shifts in position. The fingers described by
Salisbury (1984) and Bicchi & Dario (1988) both determine edges without a tactile array sensor.
With the current quality of array sensing, the loss of texture information from this source cannot
be considered devastating. However, gross texture, which might be used, for example, to detect
substance boundaries on a flat surface, would no longer be provided. Lateral Motion could still be
used to provide texture information through vibration of the force sensors in the joints (e.g., as will
be implemented by the nail in the GRASP lab).

8.1.4 Thermal

Elimination of the thermal sensor should primarily hinder the identification of the material out
of which the object is composed, through loss of information concerning the associated thermal
properties. It is possible that texture and hardness cues provided by the tactile sensors, or colour
and reflectance cues provided by vision might provide an alternate, though less precise, source of
information.

8.2 Role of the Exploratory Procediires

In our system. an exploratory procedure directs the motor control as to how to move. then reads
the sensor information and derives an object property. Although motor movement and sensors
might be intact, they would not be functional without this algorithm. Elimination of an individual
exploratory procedure means that a particular object property is lost. Hence the importance of the
procedures can be ranked by the importance of the object properties with which they are associated.
For an example -f h-iw the importance of a specific exploratory procedure could be evaluated.
consider the effects of eliminating the Contour Following procedure. That is. we do not allow the
force and position sensors to systematically follow edges of the object and extract a structural
map. Contour Following is used to extract precise information about the contours of the object.
With the reduced system. the Enclosure procedure - which we limit to a symmetrical grasp in one
position. so that Contour Following is not simulated -- can extract grosser structural information.
Vision can extract three-dimensional information about the projecting surface. Without motion of
the camera, the back surface is hidden.

This situation renders probabilistic any problem in which there is a restricted point or region
of disassembly. If the disass ly point is visible, or if it happens to be discovered from the
Enclosure, efforts can proceed. Otherwise, the system is stalled. However, a "smart" system might
still succeed: It could use the one Enclosure with wrist rotation to turn the back of the object
frontwards, hence bringing it under visual control. With a learning history, the system might in
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fact operate in this fashion. Clearly, there should be a loss in system efficiency, as measured by
time to disassemble.

8.3 Role of the Manipulatory Operators

Without algorithms to guide movement in specific ways, the system would become spastic - un-
coordinated and non-purposive in movement. If individual operators were eliminated, the system
would become deficient in particular patterns of movement. A single operator might be removed
without system failure, but at a cost in accuracy and/or time. For example, lacking a turn operator,
but retaining the ability to push, the system could turn an object or part by "tacking."

8.4 Role of Executive Control

Our system has not only sensory and motor capabilities, but a strategic plan for exploring and
manipulating objects for purposes of disassembly. The plan is intrinsically flexible, because it is
largely data-driven. However, knowledge that prioritizes activities and evaluates outcomes and
costs is necessary. Without evaluation rules, infinite persistence on ineffective action is possible.

The plan must incorporate contingencies for acknowledging failure, as well as producing success.
As is commonly acknowledged, it is not always possible to find plans for a given task that guarantee
success. If errors exceed allowed tolerances, a failure should be signaled.

Donald (1987; 1988) has presented planning strategies that allow for both success and failure
outcomes. These strategies are aimed at error detection and recovery (EDR). As others have done,
he considers the problem of object assembly, in contrast to disassembly. In Donald's EDR plans,
the success and failure of an assembly are very clear; there is no possibility that the plan will fail
without the executor reaJizing it. The EDR framework therefore fills a gap when a "sure-fire" plan
cannot be found. It provides a technology for constructing plans that might work, but that fail
in a "reasonable" way when failure is inevitable, Donald also outlines considerably more difficult
techniques for generating multi-stage EDR strategies in the presence of uncertainty.

In a constrained environment, knowledge about specific objects replaces knowledge about gen-
eral strategies, and the generation of plans can follow more traditional approaches. However, our
goal is to create a system that is. at least initially, bottom-up and extremely flexible. Not only
efficiency, but success and failure - and their recognition - are contingent on effective planning and
task control. We view disassembly as problem solving; like any such task. it requires specification
of start states, end states, and operators for moving through the problem space including the error
recovery operators. The more knowledge that is provided to the executive control, the more efficient
is the search through the problem space.

9 Another Approach to System Evaluation

The preceding discussion indicates one avenue for a research program based on the present frame-
work system components are eliminated, and performance is evaluated. A further approach is to
re-examine existing problems in disassembly, from the bottom-up perspective advocated here. In
effect, this eliminates a major component of other systems: a base of object-specific knowledge.

The bin-picking paradigm is an important example. Here, the objects in the bin constitute
decomposable partq. As typically constituted (see, for e'xample, Kelley et al., 1982; Bol-s .
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Horaud, 1986), this is a problem in pattern recognition. The objects are identical, arid a template
is available for matching. The critical effort is to determine which object is on top ar(d how it is
oriented, so that it can be grasped.

Lacking a pre-existing template, the bottom-up system adopts a different approach to tile bin-
picking problem. Vision and haptic exploration are used to find junctures between objects, which
are treated as potential "parts." Further exploration suggests where forces might be applied to
the array. Application of manipulatory operators establishes that the target object can be moved
relative to others. Ultimately, the object is grasped and removed.

An interesting difference between the two approaches arises when the objects are aligned in
a stack. This makes matters more difficult for the present approach, because the cues to object
boundaries are the edges formed by adjacent objects. If the joined surfaces are flat, detection of
these edges may be quite difficult. In contrast, the presence of a template allows the top-down
processor to anticipate the probable depth of each object, and thus to adjust the grasp.

Now, however, let us suppose that the objects are not uniform, but vary in shape, size. and
material. This makes matters more difficult for the top-down approach, because multiple templates
are needed. In contrast, the bottom-up approach should find the nonuniformity and uniformity
problems to be of roughly the same magnitude. The work of Tsikos (1987), which has been pre-
viously described, establishes the success of the bottom-up approach in tile non-uniform object
case.

10 Concluding Comments

Although we call our approach "bottom up," it is not "unintelligent." The system begins with a
repertoire of exploratory and motoric operations, as well as a strategy for applying them. Learning
refines and augments these basic capabilities. Rather than "bottom up," the system might be
termed "data-driven with constraints." It responds to what it finds in the physical environment: its
responses are constrained by its rules and available procedures. The extensive exploration allows
our system to adapt to the enormous variability of the world of objects - their varied shapes, sizes,
substances, part junctures, and arrangements. While a top-down approach is more efficient in a
restricted environment, ultimately the combinatorial explosion in a more natural context makes
this approach untenable.

The present approach represents, to our knowledge, the first effort to provide a unified framework
in which to view a broad spectrum of problems in robotic exploration and manipulation. This type
of framework serves several functions. It sp- ifie the task domain, and it relates tasks to the
sensory and motor capabilities of the system. In doing so. this framework also provides a means of
experimentally evaluating robotic systems, by considering a specific system in terms of the adequacy
and efficiency with which it achieves specified goals.
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